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U N S T E A D Y  F L U I D  F L O W  I N  T U B E S  A N D  T H I N -  
W A L L  E N V E L O P E S  

M. T. Gladyshev UDC 532.542:621.646 

Classical and new mathematical models describing the phenomenon of  hydraulic shock are considered. 

In paper [1 ], using the equations of a hydraulic shock, unsteady fluid flow in tubes and in a system of 

pipelines is studied. A bleeding pipe has an expansion bend with compressed air to reduce the pressure increase 
in a hydraulic shock. These hydrosystems are found, for example, in hydraulic presses and pressure pipelines of 
hydroelectric power plants with a pneumatic compensation reservoir. An analytical graphical solution of the problem 

was executed by the well-known Schneider-Bergeron method. In 1961 the author, together with A. A. Atavin, 

performed a series of computer calculations for the given hydraulic system using the method of characteristics. The 
method of characteristics is convenient for solving differential equations of unsteady fluid flow in pressure pipelines 

since it makes it possible to neglect convective terms in the equations, thus considerably simplifying the calculation. 

In [1 ], due to the high complexity of the method, calculations were performed only for the ease of a single turning- 

off of the shut-off device. In actual practice turning-off and turning-on of the shut-off device has a periodic char- 

acter. Moreover, the Schneider-Bergeron method itself requires the introduction of some assumptions into the 
computational scheme, in particular, all hydraulic resistances are referred to one of the ends of the pipeline. The 

results of computer calculations showed good agreement with the results of [1 ] for the case of single turning-off of 
the shut-off device. With periodic turning-off and turning-on of the shut-off device a resonance effect is observed 
in the hydraulic system if the duration of the working cycle is close to the period of the system's natural oscillations. 

Starting with the classical work of N. E. Zhukovskii (1899), who suggested that convective terms be omitted 

in the equations of a hydraulic shock, mainly these equations have been studied as yet. 
One of the first studies of the nonlinear theory of a hydraulic shock was performed in [2 ], where a grounded 

classification of the system of equations for open and pressure flows is investigated. The system of equations of a 

hydraulic shock suggested in [2] has the form 

o_e_ + 0 ou ou = g i ( x )  - x )  u lul �9 (1) 
at Ox = ' ~ + U-~x + p Ox 

With arbitrary functions i(x) and F(p, x), system of Eqs. (1) admits one operator XI -- O/Ot, and group extension 

takes place at i(x) = a / x ,  F(p, x) = k ( p ) / x ,  when X2 = tO/Ot + xO/Ox, and also at i(x) -- a, F(p, x) = k(p),  when 

X2 = O/Ox; the widest (infinite) group takes place at i(x) = 0, F(,o, x) = 0. Omitting the infinite part of the group, 

which is not usually used for practical calculations, we have 

o o o o o a a (2) 
Xl -- at ' X2 -- OX ' X 3 = t - ~  + x ~ x ,  X4 = t ~ x  d- ~ 'R'  X5 --" p ~ "  

Note that in this case we obtain linear equations by interchanging the positions of the dependent and independent 
variables 

Ox Ot Ot Ox Ot a 2 Ot 
ou-0. 

Belarusian State University of Transl~rt, Gomel. Translated from lnzhenerno-Fizicheskii Zhurnal, Vol. 68, 
No. 6, pp. 960-967, November-December, 1995. Original article submitted March 9, 1994; revision submitted June 

1, 1994. 

772 1062-0125/95/6806-0772512.50 �9 1996 Plenum Publishing Corporation 



But in practice this hodograph method is not used. We shall show how to employ knowledge of group (2). 
Self-similar solutions correspond to the extension operator X3 + a X 5  and have the form 

u = v ( ~ )  p = f n ( ~ ) ,  r  (3) ' I " 

Substituting Eqs. (3) into Eq. (1) with a zero fight-hand side, we obtain the system of ordinary differential 

equations 

2 

( v  - ~) n'  + n u '  = - c,R a n'  + (U - ~) U '  = 0 (4) 
R 

Hence 

2 
a V  = a a (S) 

2 s  d~ ( u -  ,)2 a 

i.e,, the system of Eqs. (4) is split; first Eq. (5) is solved and then the equation 

a R  = _ ,~n ( u -  ~) 

d~ ( v -  ~)2 _ a2" 

The solution at a = 0 corresponds to the problem of a piston which slides in (w > 0) and slides out (w < 0) with 

a constant velocity from a quiescent fluid with density P0 occupying half-space x > 0. The solution of this problem 

has the form 

W, 

when w < 0  u =  ~ - a ,  p =  
0 ,  

P 0 e x p ( w / a ) ,  w < ~ < w + a , 

P 0 e x p ( ~ / a -  1), w + a < ~ _ < a ,  

P0,  ~ > a ;  

when w > 0 u = 

, 

p = 

P . ,  

P0,  

w < ~ < D ,  p , =  + + I  

~ ' > D ,  n = ~,w)/~o, - p0). 

In the second solfition the conditions at the discontinuity (a hydroshock wave) 

D [/91 = [pul ,  D [ p u ] =  [pu 2 + a 2 p ] .  (6) 

Here If] = f+ - f ' - ,  where /+  and f -  are the values of the func t ion /on  opposite sides of the discontinuity. The 

conditions (6) are obtained in a regular way from the integral equations of motion (the laws of mass and momentum 

conservation) 

f p d x  - pudt  = O, f pudx  - ~ u  2 + a2p) d t =  f f  (gi - Fu l u I)  d t d x ,  
C C G 

where G is a region in plane x, t with the boundary C. 

The presented solutions of the problem of a piston glued together give the solution of the problem of the 

decomposition of an arbitrary discontinuity. 
Other invariant solutions are found in a similar manner. For example, the solution of the form 

u =  U ( x ) ,  p = e x p ( t + R ( x ) ) .  (7) 

corresponds to the operator X t + X 5 = O/Ot + pO/Op. Substituting (7) into system (1) with a zero right-hand side 

we obtain the equations 
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' ' 2 t 

1 + U R ' + U  = 0 ,  UU + a R  = 0 ,  

whose solution yields 

R = - 1  U Z + B ,  1 U a _ a 2 U = a Z x + A ,  
2a 2 3 

where A and B are integration constants. If we consider the solutions at A = 0 and small x and U, then we obtain 

a solution of the problem of a fluid flowing into a dead end. In this case pressure grows with time. 

The equations of the characteristics of system (1) have the form 

dx w =  u +_ a .  (8) 
dt  

Since lul << a, in the above approximate models Ox/Ot = +-a. But when nonlinear terms are  ignored the problems 

of the formation and disappearance of the hydroshock wave (the formation of a discontinuity in the flow region at 

smooth initial and boundary  conditions) are lost. 

The  problems for one fluid admit  generalization to the case of two contacting fluids for each of which the 

equation of state holds, i.e., Pi = a2pi (i = 1, 2). The  conditions on the contact boundary  have the form P+ -- P - ,  

u + = u - .  If a liquid contacts a gas, then on one side of the contact boundary the equations of gasdynamics are 

solved. This makes it possible to model flow discontinuity (here we shall not dwell on this). 

We generalize (1) to the case of cylindrical and spherical symmetry:  

du vu ) Ou du a 2 ~ + - -  = 0  + u  + 0p 0 
Ot dr ~ r  r ' - ~  -~r p Or = ' 

where r _> 0 is the distance from the axis (v = 1) or the center  (v = 2) of symmetry.  

Equations (9) admit  the group 

(9) 

a d o d 
X I = O- ~ , X 2 = t -~  + r -~r , X 3 = P - ~ . 

An analog of solution (3) (r is taken instead of x) also leads to the splitting of the solution. First we find U(~) from 

the equation 

a a-I-  
du  (10) 
ar ( u -  a 2 '  

and then R (~) from the equation 

d e  ( U  - r _ a2 

At a = 0 one can formulate the problem of a piston. The space is occupied by a quiescent fluid with density Jro. 

The  amplitude of piston motion with a constant velocity w = r > 0 begins to increase from the axis (v = 1) or the 

point (v = 2). We have the condition on the piston 

U = r  r 1 6 2  ( l l )  

Equation (10) at a = 0 with condition (11) was solved numerically. The  solution ended with discontinuity. From 

conditions (6) at D = Cp we obtain the condition 
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Fig. 1. Numerical solution of problem (10), (1t). 

Fig. 2. Analytical solution of Eq. (14) 

2 

A qualitative flow pattern is given in Fig. 1. 

Using the experience obtained from studies of hydraulics of open tube beds [3 ], we generalize the described 

model of N. E. Zhukovskii to the spatial case, on the one hand, and to the case of allowance for viscosity and 

dispersion, on the other. Spatial equations of a hydraulic shock were first suggested in [4 ] and have the form 

2 
a (12) Pt + div(pV) = 0 ,  V t +  (V .  V) V + ~ -  Vp = f . 

In [4 ] a group is also presented that is admitted by spatial Eqs. (12) at f = 0. If we take into account fluid viscosity, 

then the second equation in (12) has the form 

2 
a ~ (13) V t+(V .V)  V +  7-  V p -  A V = f .  

We consider the structure of discontinuity (a hydroshock wave), i.e., the solution of one-dimensional Eqs. 

(13) with f = 0, which depends on ~ = x - wt, w = const. Then we obtain ordinary differential equations. In 

dimensionless variables we assign the conditions: u -- a and p = I at x --, oo. Then the continuity equation is 

integrated and yields 

a - -  w 

P - u - w "  

Integrating the equation of motion, we obtain 

2 2 
( a -  w) u + a p - k t u ' =  ( a - w )  a + a  . 

Having excluded p and performed easy computations, we have 

du a -  W (u a )  u w +  a a (14) 
- -  - -  - -  - -  a < u < w  . f ~ d ~  u - w  w - a  ' w - a  

The distribution of u(~) is given in Fig. 2 in a general form. This solution exists at w > a + a. The front width is 

equal to 
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Fig. 3. Graphic representation (a) and solution of Eq. (17) of solution type 

(b). 

A I  = 

2 
a 

W - - G  
W - - O r  

du 

= / ~  [ (w - a )  2 - a 2 ] ( a  (w - a )  - a z) 

a (w - a )  2 [w (w - a )  - a 2 !  

When fluid and envelope dispersion is taken into account, we obtain the equation of motion 

2 
a (15)  V t +  (V.V) V + 7 - V p  + E V A =  f ,  

where A can be of the form 

a) A =  0 ~  b) A = A p  or c) A = - O d i v Y .  (16) 
Ot 2 ' Ot 

We consider, similarly, a solution of the traveling-wave type for a soliton (a solitary wave) of one- 

dimensional Eqs. (15) and (16b). The continuity equation coincides with that given above and the equation of 

motion is written in the form 

2 
a 0 (u-w) u'+Tp + e p ' "  = 0 ,  

or, integrating and using the same boundary conditions at infinity, 

I a 2 1 ( u - w )  2 +  l n p + E , p ' = ~ ( a - w )  2. 

Excluding u - w and integrating once again, we come to the equation 

E ( d , o )  2 1 2 1 ( W p a )  2 2 (17) 2 d~ =-~(w-a)2p-ap(lnp- 1) +-~ - ( w - a )  2 - a  . 

Its graphic representation for w > a + a and the solution are shown in Fig. 3. One can find a periodic solution in 

this approximation. 
The reduced method of perturbations developed by the author was applied to all of the above-described 

equations (a generalized representation for open flows is given in [31). 
We consider it using the example of three-dimensional Eqs. (12), (15), and (16a) at f -- 0. It is assumed 

that p ~ Po, u - 0, v = 0, and w - 0 for x --, ,o. In the first step we substitute independent variables 

eb b + l / 2  b + l / 2  b + l  ~ =  ( x - a t ) ,  r / = e  y,  ~ = e  z, r = e  t ,  
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where e is a fictitious small  pa ramete r  necessary  for expansions  (in final formulas it is a s sumed  that  e --- I) and  b, 

i are  the constants  de termined below in the process of reduction. Then these equations acquire the form 

b+l ~ + tb b + l / 2  0/9 + e w + p  + e - -  + e = 0 
* Or ( -  k + u) + e v Or/ a-~ Orl ~ ' 

b+l 0u eb Ou b + l / 2  Ou b + l / 2  Ou e3b E~2 03p 
e - - +  ( - 2 + u ) ~ + e  v ~ + e  w ~ +  

Or 0r o~ a~ 0r 3 

-r 0 - ~ +  r 0 - ~ ]  + r 0, (18) 
oCzor o~ar z J 0r 

b+l 0v gb 0v b + l / 2  Ov b + l / 2  
p e ~ +  ( - J l + u ) - - + e  v - - + e  

or or o,1 

0 3 E 0_2~_]0,7o2 -- e 3b+3/2 F_fit ~ + e 3b+5/2 

b+l aw eb aw b+ l /2  Ow 3+1/2 
p e - - +  ( - i + u ) - - + e  v - - + e  

ar a~ a~ 

- -  r 03 ] 3b+3/2 F__A ~ + e3b+5/2 E ~ 

a~or 2 ] a~ 

In the second step we find a solution in the form of a series with in e: 

OV 3b+l /2  E~2 03/9 w - - + e  
o~ 0r 

+tb+I/2a20/9 =0 ,  
0V 

OW 3b+1/2 F_~2 03t9 
w - - + e  - 

b+i/2a2OP 
+ e  = 0 .  

P =/9o + ePt (r  ~ ,  r  r) + e2p z ( r  ~ ,  ~,  ~) + .. . .  u = eul + . . . .  

I / 2  1/2 
v = e  [cv 1 + . . . ] ,  w = e  Jew 1 + . . . ] .  

After  the subst i tut ion of these express ions  into (10), we require that  dispersion te rms  enter  into the second 

approximation.  Then  we have b + 2 = 3b + 1. Hence,  b - 1/2. Collecting the terms at small powers of e, we obtain 

the equations 

OPl Oul Oul 2 Opt 
-xW+/9ow=O, -/gd o-F+. ~=o, 

Or1 20Pl Owl z o/91 
-/9o~o-T+a-~-=o, -pdo-~+a 0-if=o. 

From the first two equations we have 2 2 = a 2. For the leading front we choose 2 = a. Integrat ing the last equations 

and taking into account the conditions at infinity, we obtain 

a a _~_ a OPl (19) 

In a second approximat ion  from the first two equations of (18) we obtain 

0 1 9 1 0 1 9 2  0t91 Ou I ( O u 2 O v l O W l )  
"~-s~- + ~ o--~- +/9~ o-r +/9o ~, ~-~- +-~T + W) =o, 

Po 
0/21 0//2 0//1 03/91 1 OUl 2 0/92 
- - -  a + u l - +  a 2 E ~ J  - - +  a 
or a~ a~ o~ 3 -/9~a a~ a~ 

= 0 .  
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After the substitution of expressions (19) into these equations, we write 

2~ 2- , , ,  + 
or Po 

and after the differention with respect to 

~ ( 2 0 p l  
o~ Or 

a f  

+ 2 - -p~  _--Z- + P0 aE 
P0 

+ a  - - + - -  = 0 .  
o~ 2 oC 2 

This is the well-known Kadomtsev-Petviashvili equation. At E-- 0 we obtain the Khokhlov-Zabolotskii equation, to 
which Eqs. (12) are reduced. 

In a similar manner we obtain for Eqs. (13) b -- I and 

O 20Pi +2__pl.__~+PoO_lZ._~j +a - -~+--  =0 
ar or Po o~ 2 " 

This is called the Khokhlov-Zabolotskii-Kuznetsov equation. In theone-dimensional case the expression within the 

brackets equals zero. This is the Burgers and Corteveg-de-Vries equation of simple waves. 

All the presented nonlinear evolution equations describe the distribution of a package of waves of a small 

but finite amplitude. Hence it can be concluded that these waves propagate with a constant velocity, but their 

amplitude changes nonlinearly in accordance with the solution of this equation. 

On the basis of Eqs. (1), (9), (12), (13), (15), and (16), numerical calculations of one- and two- 

dimensional problems (transition of a hydroshock wave from a wide channel to a narrow one and, conversely, 

interaction of a hydroshock wave with bodies of a simple shape (wedge, round cylinder, etc.)) were performed on 

a computer. Here both the methods of through calculation and the methods of separation of discontinuties were 
used. 

System of Eqs. (1) at i = const and F(p, x) = K(p) ( g / -  KCo0)a 2 = 0) is reduced to the equation 

a afll 
2 + 2~OOP 1 0--~- = 

P~162 [ 2 K (pO) a ] 
- ~ p~ + ~K' COo) p t, 

aK GOo) 
Po p~ Ipll, 

i ~ 0  ( a) b= - l ,  ;t = a  + a,  Ul=~ooP 1 , 

i = O ( a = 0 ,  b = O , ,~ = a). 

System of Eqs. (9) is reduced to the equation 

OPl a 0191 vpl 
--~--+2~00Pl 0--~--+---7--=0 ( b - a n y ,  a = O , , t = O ) .  

This shows the validity of the reduced method of perturbations. 

N O T A T I O N  

p, fluid density; V -- (u, v, w), fluid velocity vector; a, velocity of small perturbations in the system 

fluid-thin-wall envelope; D, discontinuity velocity; w, piston velocity; v, coefficient of flow symmetry; g, gravity 

acceleration; i, inclination of tube axis; F, coefficient of hydraulic (turbulent) friction; f, vector of mass forces; 

/~, coefficient of fluid viscosity; E, coefficient of dispersion; e, fictitious small parameter; ~j, r/, ~, 2, radial variables; 
x, y, z, Cartesian coordinates; t, time. 
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